Cosmology \& Antarctica 2024

©ogmologica24 - agenda \& inclusive discussion

ein Wendepunkt der Geschichte
To view links, download the PDF - do not view in browser.

James Webb Space Telescope (JWST)

"It will be an explosion of new knowledge."

- Prof. Jacob Bean, Univ. of Chicago

Throughout this presentation:
Internet links appear in light blue.
Focal points appear in magenta.

JWST Discovers Enormous Distant Galaxies That Should Not Exist

JWST has discovered giant mature galaxies that seem to have filled the universe shortly after the big bang, and astronomers are puzzled

$$
\text { By Tereza Pultarova, SPACE.com on February 23, } 2023
$$

Nobody expected them. They were not supposed to be there. And now, nobody can explain how they had formed.

Galaxies nearly as massive as the Milky Way and full of mature red stars seem to be dispersed in deep field images obtained by the James Webb Space Telescope (Webb or JWST) during its early observation campaign, and they are giving astronomers a headache.
\rightarrow FULL ONLINE ARTICLE \leftarrow
"Difficulties are just things to overcome, after all."

Emest Shackiteton

This preliminary talk is aimed at a mixed audience of topic experts, as well as a general technical audience familiar with interpreting graphed data in medicine, biology, chemistry, math, engineering, etc. Confronting predictive models with empirical data initiates on p. 31.

It is established beyond doubt that the answer to the following is YES: New JWST Results: Is the Current Tension in Ho Signaling New Physics - Wendy L Freedman, Univ. Chicago, APS April Meeting (6 April 2024)
"Physics is the law; everything else is a recommendation." - Elon Musk (X)

World-Class Mathematical Physicist \&

Director of the Leiden Observatory

NETHERLANDS

Einstein's Friend and Opponent

We will present some equations, so let us be clear how to react to that... If one is not literate in Chinese, one cannot read this; hopefully, nobody is afraid of being judged harshly, just because they cannot read Chinese! Thanks to Google Translate, we learn that this means Foreign Language.

Pure mathematics is, in its way, the poetry of logical ideas.

- Albert Einstein (1935)外語

For most people, sophisticated mathematical equations are just as cryptic as these wonderful Chinese characters - all that is needed is a translation...

If one is not literate in differential geometry, specifically in the context of Einstein's General Theory of Relativity (GR), one similarly cannot read this; one needs a translation because the maths is a foreign language. Today, no astronomer possesses de Sitter's preeminent proficiency with the mathematics of GR; in practice, they also rely on such translations.

$$
G_{\mu \nu}+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu}
$$

This is the compact form of the Einstein Field Equations (EFE); translation: "Mass tells space how to curve, and space tells mass how to move." Basically, this cryptic equation describes THE GEOMETRY OF GRAVITY. It has yielded a number of accurate predictions, and GPS depends on it.

If one is not literate in differential geometry, specifically in the context of Einstein's General Theory of Relativity (GR), one similarly cannot read this; one needs a translation because the maths is a foreign language. Today, no astronomer possesses de Sitter's preeminent proficiency with the mathematics of GR; in practice, they also rely on such translations.

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)[\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2} \underbrace{\mathrm{~d} \theta^{2}+\sin ^{2} \theta d \phi^{2}}_{\substack{\theta-\phi \text { Physics convention } \\ \text { as per ISO-8000-2-17.3 (2019) }}})]
$$

This one is the [Friedmann-Lemaître-]Robertson-Walker metric; translation: "The Universe is expanding." Going back in time ($t \rightarrow 0$), space containing $\sim 10^{12}$ galaxies contracts ($a \rightarrow 0$), theoretically to smaller than a proton; it is possible for formulas to be Ptolemaic, making illogical ideas seem credible.

局 $a^{a} a^{2}+b^{2}=c^{2}$

Refresher！

jOURNALISM
Euclidean［flat－space］＂metric＂ （i．e．，a distance measurement）

For most，such maths were never used in professional life， and for some， equations are like外語
c
MBA
JD

For most，such maths were never used in professional life， and for some， equations are like外語	

For some majors，this is
MATHEMATICS • PHYSICS • ASTRONOMY • ENGINEERING
$\cos \theta=\frac{a}{c} \frac{\text { adjacent }}{\text { hypotenuse }}$

The EFE are not practically useful, per se; it is solutions to the EFE that are practically useful, meaning that they produce accurate predictions of measurable physical phenomena. Here is one exact solution, a metric that calculates a kind of cosmic 'distance' using "spherical coordinates". For many, this is unintelligible mathematics, so we will need a translation...

$$
\mathrm{d} s^{2}=\overbrace{-\mathrm{d} r^{2}-R^{2} \sin ^{2}\left(\frac{r}{R}\right)}^{\left[\begin{array}{c}
\text { Note that this is an angle, } \\
\text { so in there are } 3 \text { angles in } \\
\text { the space coordinates. }
\end{array}\right.}\left[\begin{array}{c}
{\left[\begin{array}{c}
\psi-\theta \text { Mathematics convention, } \\
\text { as per de Sitter's papers }
\end{array}\right.}
\end{array}\right)
$$

Experts, you know the basics; feel free to jump ahead to page 12.

The EFE are not practically useful, per se; it is solutions to the EFE that are practically useful, meaning that they produce accurate predictions of measurable physical phenomena. Here is one exact solution, a metric that calculates a kind of cosmic 'distance' using "spherical coordinates". For many, this is unintelligible mathematics, so we will need a translation...

$$
\mathrm{d}_{\uparrow}^{2}=\overbrace{-\mathrm{d}_{\uparrow} r^{2}-R^{2} \sin ^{2}\left(\frac{r}{R}\right)\left[\mathrm{d}_{\uparrow} \psi^{2}+\sin ^{2}(\psi) \mathrm{d}_{\uparrow}^{2}\right]}^{\text {space part }} \overbrace{c_{c^{2} \mathrm{~d} t^{2}}^{\text {time part }}}^{\text {p }}
$$

First, the d means "differential", an infinitesimal change to sum.

The EFE are not practically useful, per se; it is solutions to the EFE that are practically useful, meaning that they produce accurate predictions of measurable physical phenomena. Here is one exact solution, a metric that calculates a kind of cosmic 'distance' using "spherical coordinates". For many, this is unintelligible mathematics, so we will need a translation...

$$
\mathrm{d} s^{2}=\overbrace{-\mathrm{d} r^{2}-R^{2} \sin ^{2}\left(\frac{r}{R}\right)\left[\mathrm{d} \psi^{2}+\sin ^{2}(\psi) \mathrm{d} \theta^{2}\right]}^{\text {space part }} \overbrace{+c^{2} \mathrm{~d} t^{2}}^{\text {time part }}
$$

First, the d means "differential", an infinitesimal change to sum.
$>$ In physics, c is the symbol for the speed of light $\left(\sim 3 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$.

The EFE are not practically useful, per se; it is solutions to the EFE that are practically useful, meaning that they produce accurate predictions of measurable physical phenomena. Here is one exact solution, a metric that calculates a kind of cosmic 'distance' using "spherical coordinates". For many, this is unintelligible mathematics, so we will need a translation...

$$
\frac{\mathrm{d} s^{2}}{\uparrow}=\overbrace{-\mathrm{d} r^{2}-R^{2} \sin ^{2}\left(\frac{r}{R}\right)\left[\mathrm{d} \psi^{2}+\sin ^{2}(\psi) \mathrm{d} \theta^{2}\right]}^{\text {space part }} \overbrace{+c^{2} \mathrm{~d} t^{2}}^{\text {time part }}
$$

First, the d means "differential", an infinitesimal change to sum. In physics, c is the symbol for the speed of light $\left(\sim 3 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$. $>$ The ds is a length; in relativity it is called a "spacetime interval".

The EFE are not practically useful, per se; it is solutions to the EFE that are practically useful, meaning that they produce accurate predictions of measurable physical phenomena. Here is one exact solution, a metric that calculates a kind of cosmic 'distance' using "spherical coordinates". For many, this is unintelligible mathematics, so we will need a translation...

$$
\mathrm{d} s^{2}=\overbrace{-\mathrm{d} r^{2}-R^{2} \sin ^{2}\left(\frac{r}{R}\right)\left[\mathrm{d} \psi^{2}+\sin ^{2}(\psi) \mathrm{d} \theta^{2}\right]}^{\text {space part }} \overbrace{+c^{2} \mathrm{~d} t^{2}}^{\text {time part }}
$$

Incidentally, this initial solution was Einstein's, published in a 1917 paper that effectively gave birth to the field of cosmology.

The EFE are not practically useful, per se; it is solutions to the EFE that are practically useful, meaning that they produce accurate predictions of measurable physical phenomena. Here is one exact solution, a metric that calculates a kind of cosmic 'distance' using "spherical coordinates". For many, this is unintelligible mathematics, so we will need a translation...

$$
\mathrm{d} s^{2}=\overbrace{-\mathrm{d} r^{2}-R^{2} \sin ^{2}\left(\frac{r}{R}\right)\left[\mathrm{d} \psi^{2}+\sin ^{2}(\psi) \mathrm{d} \theta^{2}\right]}^{\text {space part }}
$$

$$
\mathrm{d} t=0: \text { In the above formula, ignore time (just for now). }
$$

OK, let's translate...

Instead of cartesian coordinates (x, y, z), spherical coordinatesthe r is an arbitrary radius from an origin in 3-dimensional space.

So, $r(\theta, 0)$ points straight in the z direction. The identical r is shown on the next slide...

Recall that there is also a big R in the equation; so, what does that mean? It means that r is measured on the surface of a cosmic "3-sphere" (S^{3}) such that, regardless the direction in 3-dimensional (3D) space, progress in a 'straight line' results in traversing a full circle of radius R, the effectual
cosmic radius.

The interpretation of the metric's $3^{\text {rd }}$ angle is unambiguous.

- S^{3} designates a volumetric surface of a 4D manifold.

The EFE tell us that cosmological space must be finite without boundary.

Recall that there is also a big R in the equation; so, what does that mean? It means that r is measured on the surface of a cosmic "3-sphere" $\left(S^{3}\right)$ such that, regardless the direction in 3-dimensional (3D) space, progress in a 'straight line' results in traversing a full circle of radius R, the effectual cosmic radius.

$$
\mathrm{d} \psi=0:
$$

2 space dimensions are not depicted; the circle solely denotes \mathbb{R}^{1} of \mathbb{R}^{3} dimensions. $R \notin \mathbb{R}^{3} ; R \perp \mathbb{R}^{3} ; R \in \mathbb{R}^{4}$ R is not physical space, yet it has an equivalence.

$>S^{3}$ designates a
volumetric surface
of a 4D manifold

The EFE tell us that cosmological space must be finite without boundary.

Relative to the Milky Way galaxy, which is an arbitrary cosmic origin, every other galaxy has some COSMIC ANGULAR COORDINATE, χ. This is similar to measuring distance in nautical miles (nm) because a 1 -degree geodesic* (60^{\prime} great arc) in latitude is precisely 60 nm . 운

$$
r=\chi R
$$

A geodesic in \mathbb{R}^{3}
(r) is defined by the path of light in vacuum.

* A geodesic is a minimum-distance route, typically on a curved surface.

Model ("System") A

Einstein's metric -an exact solution of the Einstein field equations A. Einstein, "Cosmological Considerations in the General Theory of Relativity", SPAW, 142 (1917).

$$
\begin{aligned}
\mathrm{d} s^{2}=-\mathrm{d} r^{2}-R^{2} \sin ^{2}\left(\frac{r}{R}\right)\left[\mathrm{d} \psi^{2}+\sin ^{2}(\psi) \mathrm{d} \theta^{2}\right] \underbrace{\substack{\frac{\mathrm{m}^{2}}{8^{2}} \cdot 8^{2}=\mathrm{s}^{2} \\
\text { units of measure }}}_{\substack{\begin{array}{c}
\text { coordinate } \\
\text { time }
\end{array} \\
+c^{2} \mathrm{~d} t^{2}}}
\end{aligned}
$$

As consistent units are required, coefficient c expresses time in meters; accordingly, 1 m of time is equivalent to $\sim 3.34 \mathrm{~ns}$ (nanoseconds; 10-9 s).

Model ("System") A

Einstein's metric -an exact solution of the Einstein field equations A. Einstein, "Cosmological Considerations in the General Theory of Relativity", SPAW, 142 (1917).

$$
\begin{gathered}
\mathrm{d} s^{2}=-\mathrm{d} r^{2}-R^{2} \sin ^{2}\left(\frac{r}{R}\right)\left[\begin{array}{c}
\mathrm{d} \psi=0 \text { simplifies to 1D space }\left(\mathbb{R}^{1}\right) . \\
c \equiv \text { speed of light }\left(\sim 2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right) \\
\text { This equals zero. }
\end{array}\right] \\
\begin{array}{c}
\begin{array}{c}
\text { coordinate } \\
\text { time }
\end{array} \\
+c^{2} \mathrm{~d} t^{2}
\end{array} \\
\begin{array}{c}
\frac{\mathrm{m}^{2}}{\mathbb{s}^{2}} \cdot \mathbb{s}^{2}=\mathrm{m}^{2} \\
\text { units of measure }
\end{array}
\end{gathered}
$$

As consistent units are required, coefficient c expresses time in meters; accordingly, 1 m of time is equivalent to $\sim 3.34 \mathrm{~ns}$ (nanoseconds; 10-9 s).

Scientists and mathematicians seek to eliminate weakness or inadequacy in an argument, similar to how predators thin populations of prey species...

Leopard seal, Antarctica

In Einstein's solution of the EFE, which produced a cosmological metric, the time coordinate (dimension) is independent of the space coordinates.

Diplomatically, Willem de Sitter found this to be "somewhat contradictory", actually pointing out a salient logical inconsistency requiring rectification...
"We thus find that in the System A the time has a separate position. That this must be so, is evident a priori. For speaking of the threedimensional world, if not equivalent to introducing an absolute time, at least implies the hypothesis that at each point of the four-dimensional space there is one absolute coordinate x_{4} which is preferable to all others to be used as "time", and that at all points and always this one coordinate is actually chosen as time. Such a fundamental difference between the time and the space-coordinates seems to be somewhat contradictory to the complete symmetry of the field-equations..."

Note: modern notation uses $x_{0} \equiv t$,

- Willem de Sitter (31 March 1917)

$$
\text { where }\left(x_{1}, x_{2}, x_{3}\right) \equiv(x, y, z)
$$

W. de Sitter, "On the relativity of inertia. Remarks concerning Einstein's latest hypothesis", KNAW Proceedings 19(2), 1217 (1917).

Model B

Willem de Sitter's metric - a different exact solution of the EFE
W. de Sitter, "Einstein's theory of gravitation and its astronomical consequences. Third paper", MNRAS 78, 3 (1917).

$$
\mathrm{d} s^{2}=-\mathrm{d} r^{2}-R^{2} \sin ^{2}\left(\frac{r}{R}\right)\left[\mathrm{d} \psi^{2}+\sin ^{2}(\psi) \mathrm{d} \theta^{2}\right]+\cos ^{2}\left(\frac{r}{R}\right) c^{2} \mathrm{~d} t^{2}
$$

Model B

Willem de Sitter's metric - a different exact solution of the EFE
W. de Sitter, "Einstein's theory of gravitation and its astronomical consequences.

Third paper", MNRAS 78, 3 (1917).

There is now a distinction between the local-reference "coordinate time" $(\mathrm{d} t)$ and the "proper time" ($\mathrm{d} \tau$) of a clock at a distance r from the observer.

Pedantic controversy aside, Eqs. (1) and (2) can be interpreted to impose local orthogonality of the time coordinate with respect to space for any inertial reference frame. Rather than a mere mathematical abstraction, that is a physical interpretation, which is also consistent with the physical interpretation of de Sitter's metric (p. 20), having the cosine function in the temporal component.

Click me..

$$
\text { (1) } \mathrm{d} s^{2}=-\mathrm{d} r^{2}+c^{2} \mathrm{~d} \tau^{2} \quad(\mathrm{~d} \psi=0)
$$

This maths is intended for topic experts; if this is unfamiliar, don't worry about it.

Pedantic controversy aside, Eqs. (1) and (2) can be interpreted to impose local orthogonality of the time coordinate with respect to space for any inertial reference frame. Rather than a mere mathematical abstraction, that is a physical interpretation, which is also consistent with the physical interpretation of de Sitter's metric (p.20), having the cosine function in the temporal component.

$$
\text { (1) } \mathrm{d} s^{2}=-\mathrm{d} r^{2}+c^{2} \mathrm{~d} \tau^{2} \quad(\mathrm{~d} \psi=0)
$$

According to the principle of relativity, no absolute physical interpretation is permitted for the four distinct coordinates of \mathbb{R}^{4} spacetime: Frame A is the spacial neighbourhood V of a point p in \mathbb{R}^{3}; the time coordinate t in A is the local vertical to V at a in \mathbb{R}^{4}. However, the geometric object t represents some abstract geometric mixure of space and time for a different frame B.

The time coordinate is dependent on the space coordinate; a distant clock ticks slower than a local ideal reference clock exclusively as a function of r. A distance-induced time dilation is modeled, absent cosmic expansion (\dot{R}).

Galaxy spectrum demonstrating 4000- \AA (Ca II) break

 emission

Spectrum shown is for
z
$z \sim 0.04$
SDSS J080418.30+401144.6
telescope $z=0$ λ_{ob} i-band $\lambda_{\text {eff }}$
r-band $\lambda_{\text {eff }}$

The Ca II break redshift is visible in the g-band.

See p. 40 Note $\lambda_{\mathrm{ob}}=\lambda_{\mathrm{em}}(z+1)$ $5200=4000(0.3+1)$
-g-band filter response curve

Wavelength [\AA 亿ngströms]
UV
g-band $\lambda_{\text {eff }}$

The meaning of de Sitter's solution to the Einstein Field Equations

As we look farther away, time slows down relative to our local clock...

As we look farther away, time slows down relative to our local clock... $@ z=1$, the distant clock ticks once for 2 ticks of the observer's clock, so, relative to the local clock, the remote clock is falling behind in time.

Any cosmic observer may use the local clock as reference coordinate time.

No galaxy constitutes some "preferred" reference frame.

$$
\text { @ } z=1
$$

$$
\frac{\mathrm{d} t}{\mathrm{~d} \tau}=2=\sec \chi
$$

$$
\chi=\frac{\pi}{3}=60^{\circ}
$$

As we look farther away, time slows down relative to our local clock...

Effect is bilateral; the remote observer perceives our clock to be slow.
(Only the boundary represents space.)
Relative to the Milky Way, this region is invisible.
$@ z=\infty$, the distant clock is not correlated to the observer's clock, and the antipodal cosmic half is not visible; it is beyond the redshift horizon.

$@ z=\infty$, the distant clock is not correlated to the observer's clock, and the antipodal cosmic half is not visible; it is beyond the redshift horizon.

A unique peculiarity of de Sitter's solution to the EFE is that it requires the total energy density of the Universe to be zero,* which seemed unphysical. With his solution newly interpreted in the context of temporal geometry, that feature proves to be a physically-rational mathematical necessity. As per the cosmological principle, antipodal cosmic 'hemispheres' (S^{3}) encompass identical mass-energy, E. Relativistic time reversal, imparting negative energy, yields a net-zero sum:
$E+(-E)=0 \quad \therefore \rho_{0}=0$

* " ρ_{0} is the average density of the world-matter."
See de Sitter (11/1917), Eqs. (6, 9B)
Conventionally, energy is a scalar quantity, yet in the atypical consideration of relativistic time reversal, this vector expression is fitting.

Things you didn't know about the Hubble Diagram

In 1921, a young Belgian mathematics postdoc and seminarian by the name of Georges Henri Lemaître wrote an essay entitled God's First Three Declarations.* The author stated that this 1921 essay was "an attempt to describe scientifically the first verses of Genesis." That formative hermeneutic essay, discovered in the archives of the Catholic University of Leuven in the late $20^{\text {th }}$ century, is the actual root of the Big-Bang theory. Lemaître (July 1894 - June 1966) was ordained as a Catholic priest in 1923.

* Footnotes: "Les trois premières paroles de Dieu." The manuscript is reproduced in Stoffel (1996), pp. 107-111. Lemaître's religious views are discussed in Lambert (1997).
Source: Helge Kragh, Matter and Spirit in the Universe PDFI (Imperial College Press, London, 2004), p. 141.

Click the cover for a book review by E. McMullin in Journal for the History of Astronomy (2005).

Georges Lemaître

Professor
Université Catholique de Louvain (1925-1966)

Pontifical Academy of Sciences (1936-1966)

PAS President (1960-1966)

In June1925, Lemaître met with Hubble at Mt. Wilson. ${ }^{1,2}$

1. references Mt. Wilson (a) 2. references Caltech (b)

They also met at the 1928 IAU conference in Holland. ${ }^{3}$
Edwin Hubble's biographies all note that he was idiosyncratic: he was a pathological liar and inclined to self-aggrandizement based on fictional exploits.

1. John Farrell, The Day Without Yesterday: Lemaître, Einstein, and the Birth of Modern Cosmology, New York: Thunder's Mouth Press, 2005, p. 78.
2. Jeremiah P. Ostriker \& Simon Mitton, Heart of Darkness: Unraveling the Mysteries of the Invisible Universe, Princeton: Princeton Univ. Press, 2013, p. 68.

Hubble diagram (1929) - annotated
The historical foundation of the 'expanding-universe' paradigm

Hubble constant H_{0} units:
$\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$

* Modeled age of Universe

$$
(\Omega=0)
$$

E. Hubble,
"A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae", PNAS 15, 168 (1929).

Hubble diagram (1929) - annotated
The modern legacy of an arbitrary* correlation 95 years ago

Modern Conventional Textbook Cosmology

(Big-Bang "^CDM" Expanding-Universe Model)
"Lambda Cold Dark Matter"

- Observed galaxy redshifts are definitively caused by the general expansion of space discovered by Edwin Hubble in 1929.

\ddot{R}

- Initially, the Universe was of subatomic size.
- Cosmic expansion started with v >> 'inflation'.
- That expansion is now inexplicably accelerating.
- Most of the Universe is undetectable 'dark stuff'.
- Galaxy superclusters formed over about 10 Gyr.
- Anomalous JWST observations are annoying...

Es ist immer angenehm, über strenge Lösungen einfacher Form zu verfügen. "It is always pleasant to have exact solutions in simple form at your disposal."

- Karl Schwarzschild, "On the Gravitational Field of a Mass Point According to Einstein's Theory"; In: Proceedings of the Royal Prussian Academy of Sciences Meeting (Bciili), 1916, p. 189. English translation: arXiv:physics/9905030 [physics.hist-ph]

The Complete Set of Empirically-Accurate Cosmological Predictive Equations Relativistic Temporal Geometry (RTG) model A logically consistent set:
(1) Theta-z
to be shown...

$$
\theta(z)=C_{R}\left(1-\frac{1}{(z+1)^{2}}\right)^{-\frac{1}{2}} \quad \text { radians }
$$

$(1 \Leftrightarrow 2 \Leftrightarrow 3)$
C_{R}, C_{V}, C_{M} are empirically-related constants of
(2) Redshift-volume proportionality; they are not "free parameters".
to be shown..

$$
S^{3}(z)=C_{V} \cdot\left[\cos ^{-1}\left(\frac{1}{z+1}\right)-\left(\frac{1}{(z+1)^{2}}-\frac{1}{(z+1)^{4}}\right)^{\frac{1}{2}}\right]
$$

arbitrary units
(3) Redshift-magnitude

These equations rest on first principles and Riemann.
to be shown..

$$
\begin{aligned}
m(z)= & C_{M}-2.5 \cdot \log \left(\frac{1}{4 \pi\left[(z+1)^{4}-(z+1)^{2}\right]}\right)+\underbrace{\epsilon_{\lambda} \cos ^{-1}\left(\frac{1}{z+1}\right)}_{\text {IGM extinction* }} \text { mags } \\
& * \frac{\mathrm{~d} \epsilon_{\lambda}}{\mathrm{d} z}=0 \text { yields a linear approximation. }
\end{aligned}
$$

Approximately-equal numbers of galaxy redshifts and blueshifts

The rough symmetry between redshifts and blueshifts within a sample population of $>10 \mathrm{k}$ galaxies in the nearby Universe $(|z| \leq 0.002)$ is indicative of random galactic velocities. This data is obviously inconsistent with the general expansion of the Big-Bang paradigm.

Theta- z log-log plot of half-light radius (pet roR50) for $\sim 800 k$ SDSS galaxies

Theta- $z \equiv$ "apparent size versus redshift" LARGER

SMALLER
ת

$z=$| 1 | \quad |
| :---: | :---: |
| $=0.01$ | $z=0.02$ |
| 1 | |

High-z

- NEARER

BLUE DOT REPRESENTS ONE GALAXY

$\sim 2.4 \times 10^{6}$ Empirical Measurements

Apparent size vs. redshift

Too many measurements to "massage" the data according to confirmation bias.

-2.4 MILLION measurements

$$
z=\frac{1}{\mid} \quad z=0.02
$$

$z=1$
There are 795,838 galaxies (data) represented in this graph, and each datum represents the average of 3 distinct (g, r, i) radius measurements.

0.005	0.01	0.02	0.03	0.04	0.05	0.1	0.2	0.3	0.2

(1) \wedge CDM: over time, AGN space density increases by >4 orders of magnitude.

S^{3} represents the volumetric 'surface' of a Riemannian 3-sphere
The fit of this a priori theoretical predictive curve to the empirical AGN population data is equally remarkable to that for the theta- z data; there are no free parameters available to achieve this fit.

A complete cosmological map of the S^{2} surface locally

 defined by Galactic latitude $b=0$ (i.e., the Galactic plane)

Catastrophic Failure of the Λ CDM Model

IRREFUTABLE EMPIRICAL FACT: The Universe is not expanding.

A professional in the field who denies this fact is gaslighting: "Gaslighting is a form of psychological manipulation in which the abuser attempts to sow selfdoubt and confusion in their victim's mind. Typically, gaslighters are seeking to gain power and control over the other person, by distorting reality and forcing them to question their own judgment and intuition."* They try to invalidate your own powers of reasoning - that is psychological malware.

So...
the Big-Bang theory, the 'Hubble law', the 'Hubble constant', 'Hubble time', 'dark energy', 'dark matter', etc. are all
". . .not even Wrong.'

That was Pauli's expression for "half-baked".
> "Lies don't end trust in false authority - the truth* does." *(p. 50)

Re: ‘dark matter’ - GravitySim

"It may be wrong, but it's how I feel."
«И не только гордость ума, а глупость ума. А главное - плутовство, именно пллутовство ума. Именно мошенничество ума», - повторил он.

Лев Толстой, Анна Каренина (1878) §8-12
"And not only the pride of the intellect, but the stupidity of the intellect. And most importantly cheating, namely cheating of the intellect. It is the fraud of the intellect", - he repeated.

Leo Tolstoy, Anna Karenina (1878) §8-12
photo credit:
Alexander F Mayer (29 Jan 2020•06:52:00) Bajo de Caracoles, Santa Cruz, Argentina SONY ILCE-6000 + EE 55-210mm F4.5-6.3 OSS ISO $160 \quad 210 \mathrm{~mm} \quad f / 6.3 \quad 1 / 400 \mathrm{~s}$
View NW to Parque Nacional Patagonia, Chile.

A man may imagine things that are false, but be can only understand things that are true, for if the things be false, the apprehension of them is not understanding.

Gruth is ever to be found in simplicity, and not in the multiplicity and confusion of things.

- Isaac newton

For additional technical details, download

This lecture is dedicated to the memory of

Sir Fred \mathfrak{H} Goyle, Brítish Astronomer Royal

(1915-2001), English astrophysicist and writer. He was one of the proponents of the steady state theory of cosmology, and, mainly with US physicist William A. Fowler (1911-95), described the processes of nucleosynthesis inside stars.

> It was Fred who flippantly coined the term "Big Bang", in poking fun at an unlikely theory of cosmic origins...
"Now, cosmology is supposed ta be the Queen of the Sciences because everything has to fit. under that umbrella. But, if \geqslant

\cdots,coshology is wrong,misinformation is being fed down to all of the sub-disciplinés and sub-sub-disciplines with the result that the thing, as I said, 'Science is a mess.' 'And you'll notice also, common sense goes out the window immediately with the Big Bang."

- Wallace W. Thornhill (1942-2023)

